일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- length of stay
- Transformer
- 대기행렬
- pytorch
- pre-trained llm
- timesfm
- NTMs
- 딥러닝
- nccl 업그레이드
- operation management
- queueing theory
- gru-d
- GaN
- timellm
- 불규칙적 샘플링
- ERD
- 토픽모델링
- ed boarding
- irregularly sampled time series
- 의료정보
- m/m/s
- 리뷰
- moirai
- nccl 설치
- 패혈증 관련 급성 호흡곤란 증후군
- first pg on this rank that detected no heartbeat of its watchdog.
- multi gpu
- Time Series
- 분산 학습
- nccl 업데이트
- Today
- Total
목록GaN (2)
데알못정을
토픽 모델링은 Text Analysis에 큰 영향을 준 연구 분야이다. 이러한 토픽 모델링에 신경망(Neural Network)을 결합하여 신경망의 장점을 적극 활용한다면, 새로운 연구 주제들이 개발되어질 수 있다. 이 논문은, 최근 연구된 신경망과 토픽 모델의 결합인 Neural Topic Model들의 종합적인 개요가 기록되어 있다. 토픽 모델링은 머신러닝, 자연어처리(NLP), 데이터 마이닝에 다양하게 적용되면서 성과를 보였다. LDA 같은 확률 기반 토픽 모델은 사전 분포로부터 샘플링된 잠재변수의 구조를 가진 문서의 데이터를 생성하는 확률적 생성 모델로 구체화 될 수 있다. LDA에서는 토픽을 이러한 잠재변수로 정의할 수 있다는 것이 장점이다. 하지만 이러한 LDA의 성과에도 불구하고, 빅데이터와..
이미지 데이터는 다차원 특징 공간의 한 점으로 표현될 수 있다. 여기 여자아이들 우기 사진이 있다고 하자. 우기의 '코'의 길이 라는 특징 1과 우기의 '눈'의 모양 이라는 특징 2를 확률 변수로 두고 어떤 한 공간상에 표현하면 확률 분포를 만들 수 있다. 생성 모델(Generative Model)은 실존하지 않지만 있을 법한 이미지를 생성할 수 있는 모델이다. 위 다변량 분포와 비슷하게 생성모델이 분포를 만들어 내면 우기의 코의 길이, 눈의 모양과 비슷하게 이미지를 만들어 낼 수 있다. 이와 같이, 생성모델의 목표는 이미지 데이터의 분포를 근사하는 모델 G를 만드는 것이다. 이러한 목적을 갖고 제안된 모델이 GAN 이다. GAN은 다음과 같이 시간이 지나면서 생성모델의 분포(초록)이 원본 데이터의 분포..